A SUBALGOL PROGRAM FOR CALCULATION OF MOLECULAR COMPOSITIONAL FORMULAS FROM MASS SPECTRAL DATA # Introduction. Mass spectrometry is a rapidly growing technique of structural analysis and identification of organic molecules. Its potential usefulness in biochemical analysis is especially exciting, and it is a leading contender for automated analysis of planetary surfaces by landing missions. The principal datum returned by a mass spectrometer is the precise molecular weight of a molecule or molecular fragment. The computational problem considered here is the establishment of the molecular formulas consistent with this datum. Since the precise atomic weight of each nuclide, except for ¹²C defined as 12.00000, differs slightly from an exact integral value, a precise mass number is often diagnostic of one or a limited number of formula, depending on the precision with which it has been measured. Tables to assist this calculation have been computed and published 1,2. However, they are limited to compounds of C, H, N, and O, and within the most common ranges these elements still require a modest amount of manual computation. As a further step towards the real-time computer-operated control and reduction of mass spectral data a program has been written for the IBM 7090 to accomplish the following extension of the tables: Consideration of all arithmetically admissible values of C, H, N and O. - 2. Admission of other elements within specified ranges. - 3. Selective printout of acceptable solutions. Since these extensions potentially admit a very large span of possible combinations, special attention was given to recalculations of scan limits in the nested iterations for values of each element. The program is therefore substantially larger, in coded instructions, than is needed for generation of complete tables; however, it is substantially shorter in computation time since fruitless loops are generally avoided. The program has been extensively run and tested and is now routinely available for job shop runs (with punch card input and output). It is currently being translated for operation on a small "LINC" computer for on-line use. The program listing and examples of its output are given following a general description and flow sheet. Copies of the 7090 program are available on request, either in SUBALGOL or absolute binary decks (available for use under compatible versions of IBSYS-FORTRAN). #### FORMULA GENERATOR #### Purpose. This program generates combinations of specified chemical components which will have a given molecular weight. #### General Description. The molecular weight, tolerance, and ranges for the number of carbon, hydrogen, oxygen, nitrogen, sulphur, phosphorus, chlorine, bromine, carbon 13 isotope and deuterium atoms to be considered are provided, and from this information additional chemical and arithmetical restrictions are imposed by the program. Using nested iterative steps, all combinations within these limits are produced, tested against the required weight, and, if found within the tolerance boundaries, recorded as possible solutions. Because the solutions are accepted primarily on their arithmetic qualifications, many are apt to be chemical impossibilities and must be discarded by the program user. No attempt is made in this program to determine the spatial arrangement or linear sequence of the elements or groups of the proposed molecule.* ### Background Chemistry. A molecular weight is considered to have two distinct parts, the integral and the fractional (INTWT and FRWT). Both these partial weights are the sums of the corresponding parts of the component atomic weights and either may be used independently in deriving a solution. The atomic weights are based on 12.000000 as the weight of one carbon atom. ^{*} The DENDRAL system (dendritic algorithm) for denoting and generating molecular structures is a subject of further reports. The main routine of the program considers a molecule composed of only C, H, Ø* and N atoms. To account for other atoms which may be present, the molecular weight is reduced appropriately for each additional substituent in the current trial. This reduced molecule must also be intact (i.e., bonding complete or no free bonding electrons). To maintain this state, each C1, Br or D atom removed is replaced by an H, and ¹³C is replaced by ¹²C. It is not necessary to replace a bivalent atom or group since, for these calculations, an electron pair or new bond will occupy the vacated position. Thus an S atom is simply removed. The maximum number of H's possible for any weight (MAXH) is extremely useful for limiting the calculations in the main routine and is obtained through the following arguments. A molecule containing only C, H, \emptyset and N atoms may be considered a concatenation of bivalent primitives of four types plus two terminal H atoms. These primitives have weights of 14, 15, 16 and 12; among these the CH₂ group has the highest concentration of H per unit of weight. A saturated hydrocarbon will give the highest proportion of hydrogens: 2(WT/14) (two H for each CH₂ unit), plus 2 (two terminant H atoms). ^{*} Ø will be used as a symbol for oxygen, to distinguish it from 0 (zero). A residue modulo 14* (remainder after division by 14) other than 2 can be obtained by incorporating other primitives. Table 2 presents replacements of CH₂ which will produce the required residue with the least possible reduction of H atoms. This reduction, a function of the residue modulo 14 (R), is given as HVAL(R). If we take Q = WT/14, the maximum number of H's for a weight WT can now be calculated: $$MAXH(WT) = 2Q + HVAL(R)$$ or $$MAXH(WT) = 2(WT/14) + HVAL(MOD(WT, 14))$$(1) Of the four primitives, only NH can contribute odd numbered values to the total molecular weight; this is the familiar rule that an odd INTWT implies an odd number of NH groups in the solution. The minimum number of nitrogen atoms (NMIN) is made odd or even depending on this condition, and successive N trial values are in increments of 2. Other maximum and minimum values are established through the use of the following three equations. C, H, \emptyset and N represent the number of those atoms present: INTWT = $$12C + H + 14N + 16\emptyset$$(2) $$FRWT = 7825H + 3074N - 5085\emptyset \dots (3)$$ $$MAXH = 2C + N + 2$$ (4) Since the largest contribution per atom to the FRWT is made by hydrogen, and finding MAXH does not involve oxygen, the maximum number of \emptyset atoms (\emptyset MAX) can be determined by restating equation 3 in the following form: 7825MAXH(INTWT - 160) > /(FRWT + 50850 - 3074NVAL) The integers which share a given remainder after division by an integer m are said to belong to a given "congruency class modulo m". For example: 9 is congruent to 149 modulo 14. In computer notation this equivalence is expressed as: R = MOD(I,m), i.e., 9 = MOD(149, 14). The highest value of \emptyset which satisfies the condition is accepted as \emptyset MAX. #### The Program Description. Execution of the program begins by reading a data card on which is recorded the molecular weight, tolerance (TOL), whether the molecule may be radical, protonated or intact (RAD), the maximum and minimum values for C, H, Ø and N, and maximum values for S, P, Cl, Br, ¹³C and D. The experimental weight and corresponding tolerance are recorded as six place decimal numbers with numbers with trailing zeros if necessary. Maximum and minimum numbers may be presented as percentage weights. The third parameter (RAD) indicates which of the three categories has been described or instructs the program to iterate through the other choices. If a radical or extra proton is to be considered, the weight read is corrected by that of 1 H atom to give an intact molecule. So that all possible solutions for each molecular weight will be found, the program attempts using INTWT's of 1 unit separation from that given, with the FRWT's adjusted accordingly. This assumes that the tolerance and true fractional weight together will not contribute more than $^{\pm}1$, to the integral weight. Note that H_{128} $^{\pm}$ 129.0016; H has the largest proportional mass fraction. The range of possible fractional weights for any INTWT is reduced if its lower level is less than -5085(INTWT/16), the maximum Ø contribution, or if its upper level is greater than 7825INTWT, the maximum H contribution. At the first entry into the main routine, which treats only compositions of C, H, \emptyset and N, the values of S, P, C1, Br, D and 13 C are set to zero. With the weights of the reduced molecule established, NMIN, ØMIN and ØMAX are evaluated. Ø is set to ØMIN and the INTWT and FRWT of an oxygen-free molecule are calculated. The MAXH of INTWT is determined and if found less than (FRWT - TOL) /7825, the program returns to set \emptyset to its next higher value. NMAX is evaluated, N is set to NMIN and the integral weight of the remaining C and H atoms is found. Division of this weight by 12 gives the first value of C to be tried as the quotient and the first value of H as the remainder. If C and H are within their respective ranges, and if FRTOT, the total fractional weight of C, H, Ø and N, differs from the FRWT of the reference molecule no more than the given tolerance, the answer is printed. Subsequent tests of C, H and FRTOT are made with one C replaced by 12 H atoms. The replacements continue until - a) C is less than its lower limit, or - b) H exceeds its upper limit or the value (2C + N + 2), or - c) FRTOT exceeds FRWT + TOL. If N+2 is not greater than NMAX, N is incremented by 2 and the program following the first setting of N is repeated. When N has reached NMAX, a similiar comparison is made between \emptyset + 1 and \emptyset MAX and a larger portion of the program may be repeated with the new value of \emptyset . After using ØMAX, increasing values of P, S, Cl, Br, ¹³C and D are tried. As any value is changed, preceding list members become zero, and for successive tests are incremented in turn to produce all possible combinations. The printed answers are also output on series of punched cards. Both records will show the given molecular weight, the solution weight, and the atoms of each type in the calculated composition. Included in the printed results, only, are - a) the molecular percentage weights of C, H, Ø and N based on atomic weights corrected for expected isotopic contributions, - b) the expected abundances of 13 C, D, 18 Ø, 15 N and 34 S, and - c) the sum of 13 C, D and 15 N abundances giving the expectation at MASS WT + 1, and the sum of 34 S and 18 O giving the expectation at MASS WT + 2. The program is written in SUBALGOL, a computer language which is the Stanford University extension of the Burroughs Algebraic Compiler. The sample results shown were obtained after 22 seconds (15 seconds for program compilation and 7 seconds for execution and printing) on the IBM 7090 computer at the Stanford University Computation Center. ## REFERENCES - Lederberg, J., "Computation of Molecular Formulas for Mass Spectrometry", Holden-Day, Inc., San Francisco, 1964. - Lederberg, J., "Tables and an Algorithm for Calculating Functional Groups of Organic Molecules in High Resolution Mass Spectrometry", NASA Scientific and Technical Aerospace Report No. N64-21426, 1964. - 3. Kendrick, E., Anal. Chem. 35:2146 (1963). Table 1 WEIGHTS USED IN PROGRAM CALCULATIONS | | C=12.0 Based Atomic Wts. | Int.Wts. | 10 ⁶ x
Fr.Wts. | Isotope Exp'tn. Corrected Wts. | |-----------------|--------------------------|----------|------------------------------|--------------------------------| | н | 1.007825 | 1 | 7825 | 1.00797 | | N | 14.003074 | 14 | 3074 | 14.0067 | | 0 | 15.994915 | 16 | - 5085 | 15.9994 | | S | 31.972074 | 32 | -27926 | 32.064 | | P | 30.973763 | 31 | -26237 | 30.9738 | | C1 | 34.968855 | 35 | -31145 | 35.453 | | Br | 78.918348 | 79 | -81652 | 79.909 | | D | 2.014102 | 2 | 14102 | | | ¹³ c | 13.003355 | 13 | 3355 | | | ¹² c | 12.00000 | 12 | 0 | 12.01115 | Table 2 FORMULAS CONTAINING THE LARGEST NUMBER OF HYDROGEN ATOMS | | | Formul | a | | | | | |--------------|-------------|---------------------------|-------------------------|----------|--------|--------|-------------------| | MOD(WT,14) | HVAL
(R) | CH ₂ Groups: + | Further
Substituents | | | | | | 0 | 0 | 1 | C=, 2H | | | | | | 1 | -1 | 2 | C=, NH, 2H |
to s | atisfy | valenc | y | | 2 | 2 | 0 | 2Н | C=, | 2H for | anothe | r CH ₂ | | 3 | 1 | 1 | NH, 2H | | | | | | 4 | 0 | 2 | 2NH, 2H | | | | | | 5 | -1 | 3 | 3NH, 2H | | | | | | 6 | -2 | 4 | 4NH, 2H | | | | | | 7 | -3 | 5 | 5NH, 2H | | | | | | 8 | -4 | 6 | 6NH, 2H | | | | | | 9 | - 5 | 4 | 4C=, NH, 2H | ** | ** | ** | ** | | 10 | -2 | 2 | 3C=, 2H | ** | 11 | ti | 11 | | 11 | -3 | 3 | 3C=, NH, 2H | ** | ** | ** | 11 | | 12 | 0 | 1 | 2C=, 2H | ** | ** | ** | 11 | | 13 | -1 | 2 | 2C=, NH, 2H | ** | " | ** | 11 | | | | | | | | | | | Some Alterna | tives | | | • | | | | | | | | | | | | | | 7 | -7 | 5 | 5C=, NH, 2H | | | | | | 8 | -4 | 2 | 4C=, 2H | ** | ** | 11 | 11 | | 9 | - 5 | 7 | 7NH, 2H | | | | | | 10 | -6 | 5 | 4C=, 2NH, 2H | | | | | | , | . | 50000000000000000000000000000000000000 | |--|-----------------------------------|--| | ī | M+2
M+2 | | | | 150. 50H
H+1 H+2
52.4 6.014 | 9448
9448
9448
9448
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478
9478 | | | .00 | 388888888888888888888888888888888888888 | | , | 1.9 | | | | ABUNDANCE
018 NIS
6.0 1.9 | 33.35.55.55.55.55.55.55.55.55.55.55.55.5 | | | 8. L | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | C13 | 24-1-40-10 - 4-1 | | • • • | | | | v 0 0 | 'n | | | 0 0 0 | N N 9.75 | 111. 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | PERCENTAGE
0
4 6.68 9 | | | | - · | 84448444844484448484848484848484848484 | | Z 1 1 | 3 | | | e o | WEI
C
76.95 | 681
500
100
100
100
100
100
100
10 | | N O O EN | ,- | | | DATA READ IN H 0 - 0 8 - 0 5 - 0 0 - 0 0 ANSWERS PRINTED | C13 | | | DATA H ANSWE | ٥ | | | 0 0 | 8 | | | 0 0 | 2 | | | U 1 1 | 10 | | | 0 0 | Z S | 7 | | RANGE
100 | FORMULA
O N S | 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | 20 20
20 20 | I co | 0N40NB04B4N404B49N0NB04B0N0V440N400440B44B | | 10L | PROPOSED
RD C | 444 WU 4411 461 BU44 WU 4110 W | | 1 0 0 | P0S | 44m mV 4mm 4mm mV4m mV mmmV4m mVVmmmmmVVm | | FR # | 80 | | | MIN FR W
1
0.368300
2
2 | ן
1
115 | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | | | MOL WT
MPLE
8.3757 | MMPLE 2
8.3716894
8.3716894
8.3716806
8.372189
8.372189
8.372189
8.377217
8.377317
8.377317
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318
8.377318 | | INT MT EXAMPLI 718 EXAMPLI 718 | MOL WT
EXAMPLE 1
718.375715 | EXAMPLE 2
718, 371686
718, 371686
718, 372189
718, 372189
718, 372189
718, 372189
718, 374312
718, 374312 | WIGHTMAN FORMULA GENERATOR STANFORD UNIVERSITY COMPILER -- VERSION OF 1/27/64 ``` *-SPACE 144... INTEGER OTHERWISE $ 144... RESERVEDWORD EXTR, SHRT, SHLT $ 144... ARRAY FRAGPKS (0..600)$ ARRAY COR(10), FRKP(0..50) $ 144... 144... ARRAY HVAL(0..13) = (0,-1,2,1,0,-1,-2,-3,-4,-5,-2,-3,0,-1)$ 144... ARRAY AVAL(0..13) = (0,1,0,1,2,3,4,5,6,7,0,1,0,1)$ 144... REAL ARRAY FLNOS(0..10)$ 144... PROCEDURE SPACE(N)$ BEGIN INTEGER OTHERWISE$ 155... IF NOT N$ (LINECOUNT=0$ WRITE($$ PAGE)$)$ 162... IF N$ (LINECOUNT=LINECOUNT+N$ WRITE($$ SPACES)$)$ 171... FORMAT PAGE(W3), SPACES($ABS(N)$W)$ RETURN$ END SPACE()$ 206... INTEGER FUNCTION MAXH(WT) = 2(WT/14) + HVAL(MOD(WT,14)) $ 234... SUBROUTINE FINDOMAX $ BEGIN OMAX = OMIN $ 234... SUBROUTINE FINDOMAX & BEGIN OMAX = OMIN & 242... OCMAX = INTWT/16 & IF HIO NEQ O & UOMAX = MIN(HID, COMAX)& 254 . . . TESTWT = INTWT + 16(OMAX + 1)$ 262... IF (OMAX +1) GTR OOMAX $ RETURN $ 270... IF 7825MAXH(TESTWT) GEQ (FRWT+5085(OMAX+1)-3074(NVAL(MOD(TESTWT. 14))))$ (OMAX = OMAX+1$ GO OM1)$ RETURN END FINDOMAX $ 316 ... 325... SUBROUTINE FINDNMAX $ BEGIN NMAX = NMIN $ FOR I = (49,-1,0)$ FRKP(I+1) = 0 $ 333... NMAXO = II/14$ IF HN NEQ O$ NMAXO = MIN(HN,NMAXO)$ 352... .. IF(NMAX + 2) GTR NMAXO$ RETURN$ HMAXNFR=(FRWT -3074(NMAX+2)+508500)$ 366... 374... 410... HMAXN = HMAXNER /7825$ IF HMAXNER LSS O $ (IF (HMAXNER + TOL) LSS O$ RETURN $ 415... 425 ... HMAXN = 0)$ IF 14(NMAX+2) LEQ (INTWT -1600 -HMAXN -12(HMAXN 426 ... -(NMAX+2) -2)/2) $ (NMAX = NMAX +2 $ IF HMAXNFR LSS 0 $ FRKP(NMAX) = -HMAXNFR $ GO NM1)$ 452... IF HMAXNER LSS 0 $ 457... 466 ... RETURN END FINDNMAX $ 467... SUBROUTINE PRINTANSWER $ BEGIN CC = CC - C13 $ 00 = 00 + 3(PP) $ 500... HH = HH - DU + PP - CLL - BRR + RAD $ 503... INTCUT = INTOT +1(RAD EQL 1) -1(RAD EQL -1) +32SS +80PP +34CLL+ 512 . . . 78BRR +DU +C13 $ 555... FROUT = FRTOT +7825(RAD EQL 1) -7825(RAD EQL -1) +27926SS+ 33667PP -38970CLL -89477BRR + 6277DU +3354C13 $ 557... 635... CCRCUT = 12.01115(CC+C13)+1.00797(HH+RAD+DU)+15.999400 + 14.0067NN 643... 716... + 32.064SS + 30.9738PP + 35.453CLL + 79.909BRR $ FLNCS(0) = 100.0/COROUT $ FLNOS(1) = 12.01115CC.FLNOS(0) $ 726 . . . FENCS(2) = 1.00797(HH + RAC).FLNOS(6)$FLNOS(3) = 15.9994(00).FLNOS 742 . . . (0)$ FLNOS(4) = 14.CO67NN.FLNOS(0)$ FLNOS(5) = 1.0806(CC)$ 761... FLNOS(7) = 2.0048(00)$ FLNGS(G) = 0.0160(HH) $ 775... FLNCS(8) = 0.3815(NN) $ 1007... FLNDS(9) = 4.4 (SS) $ 1021... WRITE($$ ANAN, SWER)$ IF PUNCHCARDS $ WRITE($$CARDR, ECORD)$ 1024 ... HH = HH + CU + PP + CLL + BRR - RAC $ CC = CC + 3PP $ CC = CC + C13 $ 1031... 1040 ... OUTPUT CARDR(INTOUT-1(FROUT LSS 0), FROUT +1CCOCOC(FROUT LSS 0), 1051... CC, HH, OO, NN, SS, PP, CLL, BRR, Cl3, DU, INWT, FRIN, TL)$ 1127... FCRMAT ECORD(14,*.*, L6, B3, $CC GTR C$12, $CC LEQ O$(Z, B2), $HH GTR O$. I3, $HH LEQ O$(Z, B3), $00 GTR O$13, $00 LEQ O$(Z, B3), $NN GTR O$13, 1132... 1251... $NN LEQ 0$(Z,B3), $SS GTR 0$13,$SS LEQ 0$(Z,B3), $PP GTR 0$13, 1323... $PP LEQ O$(Z,B3), $CLL GTR O$I3,$CLL LEQ O$(Z,B3), $BRR GTR O$I3,$BRR LEQ O$(Z,B3),$C13 GTR O$I4,$C13 LEQ O$(Z,B4),$DU GTR O$I3, ... 1375... 1447... $DU LEQ 0$(Z,B3), $RAD EQL 1$(* PRO*), $RAD EQL C$(B4), 1511... ``` ``` $RAD EQL -1$(* RAD*),82,$FRAGMENT EQL O$(14,*.*,L6,B3,16), 1545... 1566 ... $FRAGMENT GTR 0$(Z,B11,Z,B9,Z),P)$ 1566... OUTPUT ANAN(INTOUT -1(FROUT LSS 0), FROUT +1C00000(FROUT LSS 0), CC, HH, OC, NN, SS, PP, CLL, BRR, DU, C13, FOR I=(1,1,9) $FLNOS(I), 1651... 1665 ... FLNLS(5) + FLNOS(6) + FLNOS(8) + FLNOS(7) + FLNOS(9)) FCRMAT SWER(14, *. *, L6, B1, $RAD EQL 1$(** '), $RAD EQL -1$('/'), $RAD EQL. 1667... 1775... C$B1,B3, $CC GTR O$14, $CC LEQ O$(Z,B4), $HH GTR O$13,. 2050... $HH LEQ C$(Z,B3),$00 GTR O$13,$00 LEQ O$(Z,B3),$NN GTR O$13,$NN 2122... LEQ O$(Z,B3),$SS GTR O$13,$SS LEQ O$(Z,B3),$PP GTR O$13,$PP LEQ O$(Z,B3),$CLL GTR O$I3,$CLL LEQ O$(Z,B3),$BRR GTR O$I3,$BRR LEQ 2174... O$(Z,B3),$DU GTR O$13,$CU LEQ O$(Z,B3),$C13 GTR O$ 13,$C13 LEQ 2246 . . . 2300... 0$(Z,B3),B4,4(X6.2),B10,S4.3,B2,S2.1,B2,S3.2,B2,S3.2,B2,S3.2,B2, 2305... $4.3,B1,$5.4, W)$ 2305 ... RETURN END PRINTANSWER $ 2306... UNTIL SNTL $ BEGIN READ($SNTL$CONTROLS)$ RCARD($SNTL$MAS,SWT)$ 2313... SPACE(0)$ 2321... IF SNTL $ GO NEXT $ 2323... WRITE($$ECH,OREAD)$ 2326 . . . IF PUNCHCARDS WRITE($$TITLECD)$ 2332... IF CP EQL 39$ BEGIN HC = (HC.INWT)/1200 + 1 $ 2342 . . . 2345... IF LC NEQ OS LC = (LC.INWT)/1200 $ END $ 2355... IF HP EQL 39$ BEGIN 2365 . . . HIH = (HIH.INWT)/100 + 1 $ 2370 ... IF LH $ LH = (LH.INWT)/100 $ END $ IF CP EQL 39$ REGIN 2400 ... HIG = (HIO.INWT)/1600 + 1 $ 2410... 2413... IF LO $ LO = (LO.INWT)/1600 $ END $ 2423... IF NP EQL 39$ BEGIN 2433... HN = (HN.INWT)/1400 + 1 $ IF LN $ LN = (LN.INWT)/1400 $ END $ 2436... 2446 ... IF TL EQL -1$ TL = 10 INW [$ ISC = (CI3 NEQ O) OR(DEU NEQ O)$ 2454... HET = (SUL NEQ 0) OR (PHOS NEQ 0) OR (CL NEQ C) OR (BR NEQ 0) $ 2464... 2500... RAD = RD $ 2502 ... IF RD EQL 3 \$(RAD = 0\$ GO SETRAD)\$ 2507... IF RD EQL 2 $(RAD = 1$ GO SETRAD)$ 2515... COR(1) = INWT $ COR(2) = FRTN $ 2521... SETRAD.. IF (RAD EQL -1)$ (COR(1) = INWT + 1 $ COR(2) = FRTN +7825)$ 2532... IF (RAD EQL \ 1)$ (COR(1) = INWT - 1 $ COR(2) = FRTN -7825)$ 2543... COR(3) = COR(1) * COR(4) = COR(2) * 2547... MINER = COR(4) - TL $ MAXER = COR(4) + TL $ 2555... SETWTS.. 2565 ... IF 7825(COR(3) -1) GEQ (1000000 +MINFR)$ 2572... CDR(3) = COR(3) -1 $ CCR(4) = MINFR + 1000000 $ 2575... TOL = MAX(7825COR(3), 10000000 + MAXFR) - COR(4) $ ENTER MCLCOMP \$ COR(3) = COR(1) \$ COR(4) = COR(2) \$ END $ 2610... 2615... COR(4) = MAX(MINER, -5085(COR(3)/16))$ 2630 ... TCL = MIN(MAXFR, 7825COR(3)) - COR(4) 2640... ENTER MOLCOMP $ COR(3) = COR(1) + COR(4) = COR(2) + 2641... 2645 ... IF (1000000 -5085(COR(3)+1)/16) LEQ MAXFR $ BEGIN 2662... COR(3) = COR(3) + 1 COR(4) = MAX(-5085(COR(3)/16),-1000000 + 2677... MINFR) $ TOL = (-1000000 + MAXFR) - COR(4) $ 2703... ENTER MCLCOMP $ END $ 2704... GC CHECKRAC $ 2705... SUBROUTINE MOLCOMP $ BEGIN 2711... DU = C13 = SS = PP = CLL = BRR = C 2717... CCR(5) = COR(3) COR(6) = COR(4) $ 2723... SPACE(0) $ ``` ``` 2725... WRITE($$DAT, AREAD)$ 2730 ... WRITE($$HEADING)$ 2732... SETISCTOPES.. SS = PP = CLL = BRR = 0 $ INTWT = COR(5) $ FRWT = COR(6) $ 2736... CALC.. 2742 . . . OMIN = MAX(-(FRWT+TOL)/5085,LO)$ 2757... NMIN = MAX(O,LN) + (MOD(NMIN,2) NEQ MOD(INTWT,2)) $ 3004... OC = OMIN $ ENTER FINDOMAX $ 3007... SETU..BEGIN 3013... II = INTWT - 1600 \$ DD = FRWT + 508500 \$ HHMAX = MAXH(II) $ IF HIH NEQ 0 $ HHMAX = MIN(HHMAX, HIH)$ 3020... HHMAXFR = 7825HHMAX $ LODD = DO - 3074(NVAL(MOD(II,14)))$ 3032... 3050 ... IF LODD GTR HHMAXFR $ GO NEXTO$ 3054... NN = NMIN $ ENTER FINCHMAX $ BEGIN 3057... SETN.. 3071... CHWT = INTWT - (1600 + 14NN) $ IF CHWT LSS O$ GO ENDCH$ 3073... CC = CHWT/12$ HH = MOD(CHWT, 12)$ 3105... TRIAL.. IF CC LSS LC$ GO ENDCH$ 3111... IF(HH GTR HHMAX) OR 3122... (HH GTR (2CC + NN+2))$ GO ENDCH$ 3124... IF HC NEQ OS IF CC GTR HCS GO ALTERCH $ 3132... IF HH LSS LH $ GO ALTERCH $ 3136... INTOT = 12CC + HH + 14NN + 1600$ 3154 . . . FRTOT = 7825HH + 3074NN - 508500 $ 3172 ... EITHER IF (FRTOT LEQ (FRWT + TOL)) AND (FRTOT GEQ FRWT)$ 3201... (ENTER PRINTANSWER $ GO ALTERCH)$ 3205... CR IF FRTOT GIR FRWT$ GO ENDCH $ 3213... CTHERWISE$ GO ALTERCH $ 3215... ALTERCH.. (CC = CC-1$ HH = HH+12$ GO TRIAL)$ 3224... ENDCH.. IF FRKP(NN) NEQ O SFRWT = FRKP(NN) S 3226 ... 3231... 3245... END SETN $ 3253... ENDN.. NEXTO.. OC = OC+1 $ IF OO LEQ OMAX $ GO SETO $ 3256... END SETO $ 3262... ENDO.. IF NOT HET $ GO ENDHETATOMS $ 3262... 3264... IF SS LSS SUL $(SS=SS+1 $ COR(5) =COR(5) -32 $ COR(6) = COR(6)+27926. 3301... $ GO CALC)$ 3302... IF PP LSS PHOS$(PP=PP+1$COR(5)=COR(5)-8C+32SS$COR(6)=COR(6) +33667 - 27926SS $ SS = 0 $ GO CALC)$ 3331... IF CLL LSS CL $ (CLL =CLL+1 $ COR(5) = COR(5) -34 +80PP +32SS $ 3333... 3356... COR(6) = COR(6) +38970 -33667PP -27926SS $ PP=SS=C$ GO CALC)$ 3377... IF BRR LSS BR $(BRR=BRR+1 $ COR(5)=COR(5) -78 +34CLL +80PP +32SS $. COR(6) = COR(6) +89477 -38970CLL -33667PP -27926SS $ CLL=PP=SS=0 $ 3427... 3455... GO CALC)$ 3456... ENDHETATOMS.. 3457... IF NOT ISO $ GO ENDSETISO $ IF DU LSS DEU $ (DU=DU+1 $ COR(5) = COR(3) - DU -C13 $ 3460 ... COR(6) = COR(4) - 6277DU - 3354C13 GO SETISOTOPES)$ 3473... 3507 ... COR(6) = COR(4) -3354C13 DU = 0 $ GO SETISOTOPES)$ 3521... 3531 ... ENDSETISO .. RETURN END MOLCOMP $ 3532... 3532 ... CHECKRAD .. IF (RD EQL 2) AND (RAD EQL 1) $ (RAD = -1 $ GO SETRAD)$ 3537... IF((RD EQL 3) AND (RAD EQL 0))$ 3543... 3547... (RAC = 1$ GO SETRAD)$ IF ((RD EQL 3) AND (RAD EQL 1))$ 3553... 3560... (RAC = -1$ GO SETRAD)$ END $ 3564... ``` ``` * B7,*C H D N D C13 S P CL BR*,*W, B2,14,B2,$COR(6) GEQ 1000000$(*1.*),$COR(6) LSS 1000000$(*0.*). OUTPUT DAT(NAME1, NAME2, COR(5)-1(COR(6) LSS 0), COR(6)-1000000(COR(6). FR WT*,87,*TOL*,. * * D C13*,W,15,83,L6,18,16,83,13,*-*,12,$CP EQL 39$('P'),$CP NEQ . , L6, B3, I7, B3, I2, B1, *-*, 213, B1, *-*, 213, B1, *-*, 213, B1, *-*, I3, I5, I5, FORMULA*, B23, *WEIGHT PERCENTAGE*, GEQ 1000000)+1000000(COR(6) LSS 0), TOL, HC, LC, HIH, LH, HID, LD, HN, LN. 39$81,13,*-*,12,$HP EQL 39$('P'),$HP NEQ 39$81,13,*-*,12,$OP EQL 39$('P'),$0P NEQ 39$81,13,*-*,12,$NP EQL 39$('P'),$NP NEQ 39$81, INPUT MAS (NAMEL, NAME2, INWI, FRIN, IL, RD, HC, LC, CP, HIH, LH, HP, HIO, LO, OP, I2,81,12, A1.5,12,81,12, A1.5,12,81,12, A1.5,13,81,12,82, I1,81, I1,81, I1,81, I1,81 FORMAT SWT(R, B1, 2A6, B2, 14, B, 16, B2, 16, B, 12, B3, 12, B1, 12, A1.5, OUTPUT ECHI NAME1, NAME2, INWT, FRTN, TL, RD, HC, LC, HIH, LH, HIO, LO, HN, LN, OUTPUT ARES(INTOT -1(FRTOT LSS 0), FRTOT +10C0000(FRTOT LSS 0), *,2A6,W,*INT WT P CL BR NPUT CONTROLS (PUNCHCARDS, TIMECHECK, DEBUG, FRAGMENT)$ MOL WT FORMAT AREAD(2A6,85,*DATA CONSIDERED*,W2,* INT WT FCRMAI ULT (BIO, I5, *. *, L6, B4, I2, 314, B3, 316, W)$ M+2*, W2)$ S SUM*, W.* z 0 FCRMAT OREAD(825, *DATA READ IN FOR HN, LN, NP, DEU, C13, SUL, PHGS, CL, BR 15 0 I B16,*100 X ABUNDANCE*, B7,*150. M+1 ပ DO, NN, HH, CC, DMAX, NMAX, NMAXD)$ FORMAT HEADING(W2, B13, *PROPOSED TOL*, P)$ I S34 FORMAT TITLECD(FORMULA WT DEU, CI3, SUL, PHOS, CL, BR)$,DU,C13,SUL,PHOS,CL,BR)$ 018 N15 B8 ,*WT READ IN 214,215,214, W)$ 84,12,315, W2)$ 4076... 4352... 4476... 4503... 4537... 4552... 4563... 3663... 3725... 4006... +043... 4226... 4250... 4250... 4336... 4355... 4411... 4447... 4503... 4563... 3736... 3736... 4011... 4144... 4221... 4226... 3600... 3660... ``` COMPILED PROGRAM ENDS AT LIBRARY PROGRAMS END AT 4646... FINISH \$ PROGRAM VARIABLES BEGIN AT